Análisis y comparativas
Eventos GuíasNo hay páginas en esta sección.
No hay páginas en esta sección.
Análisis y comparativas
Eventos GuíasNo hay páginas en esta sección.
No hay páginas en esta sección.
¡Esta es una revisión vieja del documento!
Aquí se supone que en un futuro, esperemos que no muy lejano, vaya un mini/micro/pico curso de electrónica básica. Intentaremos explicar con términos sencillos, y con las matemáticas justas, los principios de funcionamiento de los dispositivos electrónicos más comunes, así como los circuitos típicos de aplicación.
PÁGINA EN CONSTRUCCIÓN. No te molestes en seguir leyendo.
Llamamos carga eléctrica a la cantidad de electricidad que tiene un cuerpo. A pesar de que la materia -los átomos- es eléctricamente neutra, no ocurre así con las partículas que la componen.
Las partículas subatómicas que componen los átomos son: Protones: están en el núcleo y tienen carga positiva. Neutrones: están en el núcleo y no tienen carga, ni positiva ni negativa. Electrones: están en la corteza (las capas exteriores del átomo) y tienen carga negativa.
Los átomos son neutros eléctricamente. Esto quiere decir que no poseen carga neta, o lo que es lo mismo, que la suma de sus cargas positivas y negativas da cero. Sin embargo, la carga de un átomo puede verse alterada si su número de electrones aumenta (adquiere carga negativa) o disminuye (adquiere carga positiva).
Una carga eléctrica situada en el espacio, solo por el hecho de estar ahí, produce un campo eléctrico y provoca una fuerza de atracción o repulsión con otras cargas situadas dentro del campo eléctrico generado. Si las dos cargas eléctricas son del mismo signo se repelen, mientras que si son de signo contrario sufrirán una fuerza de atracción.
Vamos ahora a conceptos un poco más abstractos. Se dice que cuando tenemos un campo eléctrico presente, el potencial eléctrico de un punto del espacio es el trabajo necesario para trasladar una carga positiva desde un punto de referencia hasta el punto del espacio considerado.
Vamos a explicar esto otra vez para que se entienda mejor:
Ahora vamos a contar lo mismo, pero en lugar de campo eléctrico vamos a utilizar la gravedad:
Pues bien, si hemos entendido más o menos lo que significa el concepto de potencial eléctrico, ahora toca decir que lo realmente interesante de todo este rollo no es el potencial en sí, sino la diferencia de potencial. Vamos a dar una pista para que veáis a dónde queremos llegar: el potencial eléctrico se mide en Voltios (V).
Si soltamos una carga eléctrica en medio de un campo eléctrico, la carga se moverá desde donde esté hacia la zona donde su energía potencial sea menor (de la misma forma que cuando soltamos un objeto en un campo gravitatorio, se mueve hacia la zona donde su energía potencial es menor), y realizará un trabajo en su recorrido.
Dicho de otra forma, las cargas eléctricas se mueven de un punto a otro cuando existe una diferencia de potencial. Las cargas positivas se moverán de los puntos con potencial más positivo a los puntos con potencial más negativo, mientras que las cargas eléctricas se moverán de los puntos con potencial más negativo a los de potencial más positivo.
¿Y a qué viene todo esto del potencial y la diferencia de potencial? Pues bien, para conseguir que las cargas eléctricas se muevan, lo de situar una carga puntual en el vacío para que genere un campo eléctrico, etc… no resulta muy práctico. Pero hay muchas formas de producir una diferencia de potencial, que al fin y al cabo es lo que nos interesa.
Los métodos más habituales para producir una diferencia de potencial eléctrico son los químicos (baterías) y la inducción electromagnética (alternadores y dinamos).
Dado que el potencial eléctrico se mide en Voltios (V), la diferencia de potencial también se mide en Voltios, y es lo que comúnmente llamamos voltaje.
Por lo tanto, el resumen de todo esto es que el voltaje entre dos puntos es la diferencia de potencial eléctrico entre esos dos puntos, o dicho de otra forma, es la caída que experimentan las cargas cuando pasan de un punto al otro, equivalente a la caída que sufre nuestro Arduino desde lo alto del armario hasta el suelo.
Cuanto mayor es el voltaje, mayor es la diferencia de potencial y mayor es el salto o caída, y por lo tanto la energía o trabajo producido es mayor.